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Overview 

• The problem 

• What we said 

• What was real 

• Lessons learned 



  
The Event 

• On January 14, 2015 an ammonia alarm was sounded on the 
International Space Station 

• Spurious accumulator level reading on the Node 2 LTL (low 
temperature internal water loop) accumulator indicated 
possible leak from external ammonia loop 

• Ammonia leak protocol 

– Stop external active thermal control system (EATCS) ammonia 
pump 

• reduces pressure at the heat exchangers 

– Isolate ammonia tank assembly (ATA) which is used as a system 
accumulator 

• isolates the large (~130 kg or 300 lb) reservoir of ammonia 

– Vent nitrogen from one of the isolated radiator flow paths 

– Open system to the now-vented radiator flow path 

• creates ullage in the system 

– System becomes two-phase and will reach the saturation pressure 
associated with the temperature of the warmest fluid 

 



  
Aftermath 

• Volume calculations (the volume of the radiator passage – the pump 

accumulator D volume) showed that 18 liters (0.64 ft3) of ammonia vapor 

had been formed  
– 0.1 kg (0.21 lbm) of vapor 

– requires 120 kJ (110 BTU) of energy 

• raise 1 liter of water 28°C 

– energy is available in the fluid itself and in the lines and fittings 

• Over time the fluid pressure adjusted to the highest temperature in the loop 

(endcone lines) 
– the liquid/vapor interface was located there 

– the local temperature set the pressure 

• The pressure beat over the orbit as the average loop temperature (and 

average liquid density) cycled - moving the fluid between cooler and warmer 

parts of the endcone) 
– 905 to 950 kPa >> 21.7 to 23.3°C (71-74°F) 
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Recovery 

• Because Loop B was stagnant, the liquid in the lines outside 
of the heated endcones was free to drop to the local 
environment temperature 

• Of most concern was the boom tray temperature, which is the 
fluid closest to the endcones (where the heat exchangers 
reside)  

– during repressurization, this fluid would fill the endcones, then the 
heat exchangers 

• Passive thermal analysis of boom tray temperatures 
– fluid upstream of Node 3 heat exchanger was -29°C (-20°F) 

– fluid upstream of Node 2 heat exchangers was 0°C (32°F) 

• 18 liters (0.64 ft3) of vapor would fill 40 m (135 ft) of 1 inch 
tubing 

– not enough to completely fill the endcones 

– we could not know which endcone lines were filled and which were 
empty 

 

 



  

    

 

 

 

 

 

 

   

Limitations 

• We did not want to send subfreezing ammonia to the heat 
exchangers mounted on Node 2 (Node 2 LT, JEM MT and APM LT)  
– 0°C fluid in boom trays 
– 2.8 liters (0.1 ft3) of volume in shortest leg to Node 2 LT 
– required dwell time of four hours to increase temperature to 5.5°C 42°F 

(required margin) 

• We did not want to send subfreezing ammonia to the Node 3 LT 
heat exchanger 
– -29°C (-20°F) fluid in boom trays 

– 0.8 liters (0.03 ft3) of volume in shortest leg to Node 3 LT 

– required dwell time exceeded 12 hours to increase temperature to 5.5°C 
42°F 
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Previous PMA Recovery Procedure 

• Open ATA to system 

• Pressurize enough to introduce enough liquid into 

system to fill the shortest leg (from boom tray to HX) 

• Dwell to allow fluid to warm to endcone temperature  

• Repeat 

 

• With 0.8 liters (0.03 ft3) critical volume and dwell time 

>12 hours, this would have required more than 10 days 

 



  
Idea 

• Could we show that freezing would not occur even if cold 

ammonia entered the Node 3 heat exchanger? 

– Node 3 LTL H/X was colder than the US Lab MTL H/X 

• That would allow us to use  
• only the limit of the Node 2 endcone volume - 2.8 liters (0.1 ft3) 

• a shorter dwell  

– 4 hours since the boom tray upstream of Node 2 was at 0°C  

 



  
Current Configuration 

Water 

1500 lbm/hr @ >27°C (80°F) 
psat = 1200 kPa (153 psia) 
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In the Heat Exchanger 

 

– Heat exchanger effectiveness is near unity 

– When cold inflow begins, the water temperature at the exit (LHS) 
is 80°F 

– As cold flow has passes through the core, the water exit temperature 

drops 

– Minimum water exit temperature occurs when entire core has 

experienced cold flow 
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At the Heat Exchanger Water Exit 

• Ammonia is as cold as -20°F 

• Water is colder than 80°F 

 

 

 

• Core metal temperature will be determined by relative 

magnitude of water and ammonia heat transfer 

– UAwater>UAammonia so core temperature will be closer to the water 

temperature than to the ammonia temperature 
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Two Results 

• Detailed SINDA/FLUINT model indicated that the 
minimum metal temperature was >15°C (60°F) 

• Hand calculation 

35.3°F = 1.8°C 

measured water 

temperature 



  
Flowing IFHX Model Schematic Normal Operation 
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1st Node Metal Temperature 



  
Why The Difference? (in Hindsight) 

• The SINDA/FLUINT model took the heating from warm 

metal into account 

– ammonia was warmed to -25°C (-13°F) 

     but that was not the largest effect 

• The model element size was 0.2 inches 

– because the ammonia flow was so low (about 100:1 ratio), all 

the heat transfer took place in the first element or two 

• The model was returning the average metal temperature 

within the first element, not the minimum temperature 

(which would occur at the entrance) 

• We were safe to proceed despite the difference in the 

results because even the conservative hand calculation 

showed positive margin 
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The Right Answer 

• Hand calculation 

38.7°F = 3.7°C 

model water exit 

temperature 
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1500 
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The Home Stretch 

• 2.8 liter (0.1 ft3) insertions on 4 hour centers were begun 

• System hard packed after 15.7 liters (0.56 ft3) of 

ammonia inserted (vs. 17.9 liter - 0.64 ft3 initial estimate) 

– based on ATA quantity change 

– process took 24 hours 

• System was ready to be restarted 4 days after ammonia 

alarm event 

 



  
Lessons Learned 

• Detailed Thermal Math Models are most accurate when 

they are used for the purpose for which they were 

developed 

• Operating models outside of their planned range is risky 

• Hand calculations can be used  

– as a check on the detailed model  

– to gain confidence that the chosen path is safe 
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Normal Operating Conditions 
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Starting Conditions for Refill 

• Node 3 LT HX was flowing and was warm 

• Node 2 LT HX was flowing 

• JEM MT HX was flowing 

• APM LT HX was isolated and its heaters were on 
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How Did We Know That There Was No Leak? 

• Accumulator spike was not right 

– instantaneous accumulator level change is indicative of a large 

leak 

– a large leak would have stroked the accumulator fully 

• pATCS>>pITCS 

• There was no instantaneous change in loop pressure 

– changes in gas cap accumulator quantity always result in 

changes in loop pressure  



  
Initial Idea 

• Since Node 3 LT was flowing and warm,  

– pressurize accumulator to a pressure below one that would force 

liquid into the Node 3 LT HX  

– observe the Node 2 endcone volume limit of 2.8 liters (0.1 ft3) 

– wait for required dwell time 

– repeat 

• One successful push was obtained but it was clear that we 

would soon run out of pressure headroom 

– as we pushed more liquid into the system, the liquid/vapor interface 

would be forced into warmer areas, creating higher pressures 

– Node 3 LT-induced saturation pressure limit would be reached 



  

25.75°C >> 1025 kPa 



  
Node 3 Endcone and Heat Exchangers 

For Node 3: 

Temp X ~ 26 C (telemetry) 

Temp Y ~ 18-20 C (est. shell temp) 

Temp Z ~ -29C (analysis) 

Result: NH3 vapor in IFHX, cold 

ammonia not too far away 

 

Protection of the Node 3 LTL IFHX 

was driving timeline 

Temp = X 

Temp = Y 

Temp = Z 



  
Pressure Increase Scenario 

• Consider the loop pressure to be constant at 1000 kPa 

• If the loop pressure is increased 

– Once p>1200 kPa condensation will occur 

• condensation can be limited by available heat transfer or vapor 

inflow 

– Once all vapor is condensed, liquid ammonia will be pulled into 

the heat exchanger core 

• 19:1 density ratio  

contemporaneous 

chart 



  
Pressure Increase Scenario 

– Liquid inflow will be limited by the 0.032 inch orifice 

orifice 

Dp 

(psid) 

orifice 

Dp (kPa) 

m dot 

(lbm/hr) 

minutes 

to fill 

core 

1 6.9 7 9 

5 34.5 16 4 

10 69.0 23 3 

orbital cycle D is ~45 kPa 

contemporaneous 

chart 



  
Water Temperatures 



  
 



  
 



  

• water values used 

directly from vendor data 

• ammonia values 

developed from basic 

principles 

– pure laminar flow does 

not allow for UA 

enhancement from 

serpentine nature of flow 

path 

 

Heat Exchanger Performance 



  
Simplified Model Schematic 
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Flowing IFHX Model Schematic  

Normal operation 
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IFHX 

 

Note that IFHX Water Inlet Temp Sensor is 

labeled “IFHX Core Temp” in op nom 



  
Loop Configurations 
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